Comment la ruse quantique peut brouiller cause et effet
Dans le journal Nature du 28/06/2017 a été publié un article fort intéressant : « How quantum trickery can scramble cause and effect », « Comment la ruse quantique peut brouiller la cause et l’effet ». Cet article original est proposé en copie dans son intégralité en fin de celui-ci.
Globalement le cœur de l’expérience s’appuie sur le fait qu’un dispositif expérimental permet avec des miroirs semi transparent qu’il y ait de la part de l’observateur une perte d’information spatio-temporelle sur l’objet quantique (ici des photons) qui parcourt ce dispositif. Cela correspond en grande partie au dispositif expérimental de mon projet d’expérience que je décris à nouveau dans l’article du 21/09/2016. Je cite une partie de l’article original, sa page 4, car il y a une conclusion d’étape qui confirme ce qui n’était jusqu’à présent qu’une de mes hypothèses premières, c’est donc une belle surprise :
“Having demonstrated causal indeterminacy experimentally, the Vienna team wanted to go further. It's one thing to create a quantum superposition of causal states, in which it is simply not determined what caused what (that is, whether the gate order is AB or BA). But the researchers wondered whether it is possible to preserve causal ambiguity even if they spy on the photon as it travels through various gates.
At face value, this would seem to violate the idea that sustaining a superposition depends on not trying to measure it. But researchers are now realizing that in quantum mechanics, it's not exactly what you do that matters, but what you know.”
Traduit par mes soins :
« Ayant démontré expérimentalement l’indétermination causal, l’équipe de Vienne veut aller plus loin. C’est une chose de créer une superposition quantique d’états causaux, dans laquelle il n’est simplement pas déterminé quoi cause quoi (ce qui veut dire, soit l’ordre de la porte AB ou BA). Mais les chercheurs se sont demandés s’il serait possible de préserver l’ambiguïté causal même s’ils espionnent le photon pendant qu’il se déplace à travers les différentes portes.
Au pied de la lettre, ceci semblerait violer l’idée que maintenir une superposition dépend de ne pas essayer de le détecter par la mesure. Mais maintenant les chercheurs réalisent qu’en mécanique quantique, ce n’est pas exactement ce que vous faites qui importe, mais ce que vous savez (sic). »
Donc à ce niveau nous atteignons un point crucial car « ce que vous savez » signifie que la ‘présence du sujet pensant’ contribue d’une façon déterminante à la phénoménologie du monde quantique spécifiquement observé par celui-ci. Pour cette raison, dans mon projet d’expérience j’accorde de l’importance à l’imagerie cérébrale pour tenter d’enregistrer en temps réel le processus de la réception cérébrale de l’observateur et en décrypter sa spécificité. L’affirmation des chercheurs abondent largement dans le sens de mon hypothèse fondamentale car le savoir est relatif à l’aptitude du sujet pensant à accéder au savoir en question. C’est la raison pour laquelle je propose qu’il y ait dans mon projet 3 échantillons d’observateurs ayant a priori des aptitudes différenciées pour nous décrire ce que in fine ils observent.
Je poursuis la citation de l’article original avec sa traduction qui suit :
« Last year, Walther and his colleagues devised a way to measure the photon as it passes through the two gates without immediately changing what they know about it6. They encode the result of the measurement in the photon itself, but do not read it out at the time. Because the photon goes through the whole circuit before it is detected and the measurement is revealed, that information can't be used to reconstruct the gate order. It's as if you asked someone to keep a record of how they feel during a trip and then relay the information to you later — so that you can't deduce exactly when and where they were when they wrote it down.
As the Vienna researchers showed, this ignorance preserves the causal superposition. “We don't extract any information about the measurement result until the very end of the entire process, when the final readout takes place,” says Walther. “So the outcome of the measurement process, and the time when it was made, are hidden but still affect the final result.”
“L’année passée, Walther et ses collègues imaginent un moyen de mesurer le photon quand il passe à travers les deux portes sans changer immédiatement ce qu’ils savent de ce résultat. Ils encodent le résultat dans le photon lui-même, mais ne le lisent pas à ce moment-là. Parce que le photon circule à travers tout le circuit avant qu’il ne soit détecté et que la mesure ne soit révélée, cette information ne peut pas être utilisée pour reconstruire l’ordre des portes. C’est comme si vous demandez à quelqu’un de garder la mémoire de comment il se sent pendant un voyage et vous fait parvenir cette information plus tard – ainsi vous ne pouvez pas déduire exactement quand et où il était quand il l’a écrit.
Comme les chercheurs Viennois l’ont montré, cette ignorance préserve la superposition causale. « Nous n’extrayons aucune information du résultat de la mesure avant la fin complète du processus, c’est-à-dire quand nous assurons la mesure, » dit Walther. « Ainsi le résultat du processus de la mesure, et le moment quand elle fut faite, sont cachés mais affectent encore le résultat final. »
En dehors du fait qu’ils obtiennent des résultats concrets dont leur interprétation coïncide avec ce que je propose en tant qu’hypothèse fondamentale à vérifier dans mon projet d’expérience, les chercheurs Viennois et du Perimeter Institute ont une perspective précise d’application en vue de concevoir des ordinateurs quantiques les plus performants possibles.
Toutefois dans le dernier paragraphe de l’article : Unité dans l’Univers, on retrouve une volonté de tenter d’élucider la problématique de la causalité pour le moins dans le domaine quantique. Questionnement, qui semblerait pour ces chercheurs, ne pas avoir de raison d’être à l’échelle classique puisque cette problématique a une réponse nette et définitive, grâce à la relativité générale. Puisque leur souci est l’unification de la physique, s’il y avait deux régimes distincts de la chaîne de causalité, comment concevoir le raccordement unificateur de l’Univers ou plutôt concrètement de la physique de l’Univers ? Evidemment ce questionnement est approprié puisque ce hiatus nous accompagne depuis belle lurette.
Je propose quelques citations originales qui sont à mes yeux sources d’un questionnement essentiel, qui le restera encore un certain temps, mais nous avons de bonnes raisons d’être optimistes. Ensuite, je traduis ces citations et les commente à l’occasion.
« The bigger goal, however, is theoretical. Quantum causality might supply a point of entry to some of the hardest questions in physics — such as where quantum mechanics comes from.
Quantum theory has always looked a little ad hoc. The Schrödinger equation works marvelously to predict the outcomes of quantum experiments, but researchers are still arguing about what it means, because it's not clear what the physics behind it is...
“The framework of causal models provides a new perspective on these questions,” says Katja Ried... “If quantum theory is a theory about how nature processes and distributes information, then asking in which ways events can influence each other may reveal the rules of this processing.”
“Most of the attempts to understand quantum mechanics involve trying to save some aspects of the old classical picture, such as particle trajectories,” says Brukner. But history shows us that what is generally needed in such cases is something more, he says — something that goes beyond the old ideas, such as a new way of thinking about causality itself. “When you have a radical theory, to understand it you usually need something even more radical.”
« Néanmoins, le but le plus grand est théorique. La causalité quantique devrait nous fournir un point d’entrée à quelques-unes des questions les plus difficiles en physique – telles que d’où vient la mécanique quantique. » Ma réponse à cette interrogation est claire, certes iconoclaste, mais les chercheurs de Vienne ont tutoyé la logique de ma proposition, ils n’ont pas franchi ce Rubicon : « La Nature n’est pas structurée par la chaîne de causalité que nous lui prêtons. Le principe de causalité est une construction de l’esprit et non pas une loi de la Nature : voir article du 10/11/2015. »
« La théorie quantique a toujours semblé un peu ad hoc. L’équation de Schrödinger fonctionne merveilleusement bien pour prédire les résultats des expériences quantiques, mais les chercheurs se demandent toujours ce que cela signifie, parce que ce n’est pas clair, quelle est la physique qu’il y a derrière. » Cela est vrai, mais je pense que c’est une situation encore provisoire, parce que nous ne pensons pas encore quantique mais avec la mise en évidence de nouveaux paradigmes, des connexions cérébrales nouvelles s’établiront. La preuve, on peut considérer que l’article de Nature est pour moi un bon pas en avant avec la compréhension suivante (qui doit être considérée comme une découverte) : « it's not exactly what you do that matters, but what you know”. Voir article du 26/09/2015.
« La plupart des tentatives pour comprendre la mécanique quantique implique d’essayer de sauver quelques aspects de la vieille physique, tels que les trajectoires des particules » nous dit Bruckner. Mais l’histoire nous montre que ce qui est généralement nécessaire, dans de tels cas, c’est quelque chose en plus – quelque chose qui va au-delà des idées anciennes, par exemple une nouvelle voie de penser à propos de la causalité elle-même. « Quand vous avez une théorie radicale, pour la comprendre vous avez usuellement besoin de quelque chose de bien plus radical. »
Je ne peux qu’approuver les propos de Bruckner et lui répondre que mon article du 10/11/2015 suggère une voie qui doit être exploitée et que mon projet d’expérience contient des résultats potentiels qui peuvent éclairer le paysage de la mécanique quantique, ceci couplé évidemment avec l’hypothèse du sujet pensant fondateur de l’espace-temps car espace-temps et chaîne de causalité sont intimement corrélés.
Pour souligner l’intérêt que j’attribue à l’article dans ‘Nature’, j’ajoute quelques citations qui font sens et qui se trouvent à la page 2 :
“Causality lies at the interface between quantum mechanics and general relativity,”. Pour aborder amplement cette problématique, je propose d’investir aussi sur une autre interface comme je l’ai indiqué dans l’article du 18/03/2015 : ‘Décrypter la physique comme science de l’interface de l’être humain et de la Nature ! »
“No reason can be adduced to explain that particular outcome… Measurements of entangled particles show, however, that the observed correlation between the spins can't be explained on the basis of pre-existing properties. But these correlations don't actually violate relativity because they can't be used to communicate faster than light. Quite how the relationship arises is hard to explain in any intuitive cause-and-effect way.” A mon sens l’explication qu’il faut prospecter est celle de l’inexistence d’espace-temps quand il y a intrication, car non fondé par le « sujet pensant » à cause de ‘TpS’ et depuis 2011, j’ai posté plusieurs articles à ce sujet. Peut-être que la conjecture EPR = ER, nous dit quelque chose de semblable.
How quantum trickery can scramble cause and effect
Logic-defying experiments in quantum causality can twist the notion of time itself.
- Philip Ball1 28 June 2017
Albert Einstein is heading out for his daily stroll and has to pass through two doorways. First he walks through the green door, and then through the red one. Or wait — did he go through the red first and then the green? It must have been one or the other. The events had have to happened in a sequence, right?
Not if Einstein were riding on one of the photons ricocheting through Philip Walther's lab at the University of Vienna. Walther's group has shown that it is impossible to say in which order these photons pass through a pair of gates as they zip around the lab. It's not that this information gets lost or jumbled — it simply doesn't exist. In Walther's experiments, there is no well-defined order of events.
This finding1 in 2015 made the quantum world seem even stranger than scientists had thought. Walther's experiments mash up causality: the idea that one thing leads to another. It is as if the physicists have scrambled the concept of time itself, so that it seems to run in two directions at once.
In everyday language, that sounds nonsensical. But within the mathematical formalism of quantum theory, ambiguity about causation emerges in a perfectly logical and consistent way. And by creating systems that lack a clear flow of cause and effect2, researchers now think they can tap into a rich realm of possibilities. Some suggest that they could boost the already phenomenal potential of quantum computing. “A quantum computer free from the constraints of a predefined causal structure might solve some problems faster than conventional quantum computers,” says quantum theorist Giulio Chiribella of the University of Hong Kong.
What's more, thinking about the 'causal structure' of quantum mechanics — which events precede or succeed others — might prove to be more productive, and ultimately more intuitive, than couching it in the typical mind-bending language that describes photons as being both waves and particles, or events as blurred by a haze of uncertainty.
And because causation is really about how objects influence one another across time and space, this new approach could provide the first steps towards uniting the two cornerstone theories of physics and resolving one of the most profound scientific challenges today. “Causality lies at the interface between quantum mechanics and general relativity,” says Walther's collaborator Časlav Brukner, a theorist at the Institute for Quantum Optics and Quantum Information in Vienna, “and so it could help us to think about how one could merge the two conceptually.”
Tangles in time
Causation has been a key issue in quantum mechanics since the mid-1930s, when Einstein challenged the apparent randomness that Niels Bohr and Werner Heisenberg had installed at the heart of the theory. Bohr and Heisenberg's Copenhagen interpretation insisted that the outcome of a quantum measurement — such as checking the orientation of a photon's plane of polarization — is determined at random, and only in the instant that the measurement is made. No reason can be adduced to explain that particular outcome. But in 1935, Einstein and his young colleagues Boris Podolsky and Nathan Rosen (now collectively denoted EPR) described a thought experiment that pushed Bohr's interpretation to a seemingly impossible conclusion.
The EPR experiment involves two particles, A and B, that have been prepared with interdependent, or 'entangled', properties. For example, if A has an upward-pointing 'spin' (crudely, a quantum property that can be pictured a little bit like the orientation of a bar magnet), then B must be down, and vice versa.
Both pairs of orientations are possible. But researchers can discover the actual orientation only when they make a measurement on one of the particles. According to the Copenhagen interpretation, that measurement doesn't just reveal the particle's state; it actually fixes it in that instant. That means it also instantly fixes the state of the particle's entangled partner — however far away that partner is. But Einstein considered this apparent instant action at a distance impossible, because it would require faster-than-light interaction across space, which is forbidden by his special theory of relativity. Einstein was convinced that this invalidated the Copenhagen interpretation, and that particles A and B must already have well-defined spins before anybody looks at them.
Measurements of entangled particles show, however, that the observed correlation between the spins can't be explained on the basis of pre-existing properties. But these correlations don't actually violate relativity because they can't be used to communicate faster than light. Quite how the relationship arises is hard to explain in any intuitive cause-and-effect way.
But what the Copenhagen interpretation does at least seem to retain is a time-ordering logic: a measurement can't induce an effect until after it has been made. For event A to have any effect on event B, A has to happen first. The trouble is that this logic has unravelled over the past decade, as researchers have realized that it is possible to imagine quantum scenarios in which one simply can't say which of two related events happens first.
Classically, this situation sounds impossible. True, we might not actually know whether A or B happened first — but one of them surely did. Quantum indeterminacy, however, isn't a lack of knowledge; it's a fundamental prohibition on pronouncing on any 'true state of affairs' before a measurement is made.
Ambiguous action
Brukner's group in Vienna, Chiribella's team and others have been pioneering efforts to explore this ambiguous causality in quantum mechanics3, 4. They have devised ways to create related events A and B such that no one can say whether A preceded and led to (in a sense 'caused') B, or vice versa. This arrangement enables information to be shared between A and B in ways that are ruled out if there is a definite causal order. In other words, an indeterminate causal order lets researchers do things with quantum systems that are otherwise impossible.
The trick they use involves creating a special type of quantum 'superposition'. Superpositions of quantum states are well known: a spin, for example, can be placed in a superposition of up and down states. And the two spins in the EPR experiment are in a superposition — in that case involving two particles. It's often said that a quantum object in a superposition exists in two states at once, but more properly it simply cannot be said in advance what the outcome of a measurement would be. The two observable states can be used as the binary states (1 and 0) of quantum bits, or qubits, which are the basic elements of quantum computers.
The researchers extend this concept by creating a causal superposition. In this case, the two states represent sequences of events: a particle goes first through gate A and then through gate B (so that A's output state determines B's input), or vice versa.
In 2009, Chiribella and his co-workers came up with a theoretical way to do an experiment like this using a single qubit as a switch that controls the causal order of events experienced by a particle that acts as second qubit3. When the control-switch qubit is in state 0, the particle goes through gate A first, and then through gate B. When the control qubit is in state 1, the order of the second qubit is BA. But if that qubit is in a superposition of 0 and 1, the second qubit experiences a causal superposition of both sequences — meaning there is no defined order to the particle's traversal of the gates (see 'Trippy journeys').
Nik Spencer/Nature
Three years later, Chiribella proposed an explicit experimental procedure for enacting this idea5; Walther, Brukner and their colleagues subsequently worked out how to implement it in the lab1. The Vienna team uses a series of 'waveplates' (crystals that change a photon's polarization) and partial mirrors that reflect light and also let some pass through. These devices act as the logic gates A and B to manipulate the polarization of a test photon. A control qubit determines whether the photon experiences AB or BA — or a causal superposition of both. But any attempt to find out whether the photon goes through gate A or gate B first will destroy the superposition of gate ordering.
Having demonstrated causal indeterminacy experimentally, the Vienna team wanted to go further. It's one thing to create a quantum superposition of causal states, in which it is simply not determined what caused what (that is, whether the gate order is AB or BA). But the researchers wondered whether it is possible to preserve causal ambiguity even if they spy on the photon as it travels through various gates.
At face value, this would seem to violate the idea that sustaining a superposition depends on not trying to measure it. But researchers are now realizing that in quantum mechanics, it's not exactly what you do that matters, but what you know.
Last year, Walther and his colleagues devised a way to measure the photon as it passes through the two gates without immediately changing what they know about it6. They encode the result of the measurement in the photon itself, but do not read it out at the time. Because the photon goes through the whole circuit before it is detected and the measurement is revealed, that information can't be used to reconstruct the gate order. It's as if you asked someone to keep a record of how they feel during a trip and then relay the information to you later — so that you can't deduce exactly when and where they were when they wrote it down.
As the Vienna researchers showed, this ignorance preserves the causal superposition. “We don't extract any information about the measurement result until the very end of the entire process, when the final readout takes place,” says Walther. “So the outcome of the measurement process, and the time when it was made, are hidden but still affect the final result.”
Other teams have also been creating experimental cases of causal ambiguity by using quantum optics. For example, a group at the University of Waterloo in Canada and the nearby Perimeter Institute for Theoretical Physics has created quantum circuits that manipulate photon states to produce a different causal mash-up. In effect, a photon passes through gates A and B in that order, but its state is determined by a mixture of two causal procedures: either the effect of B is determined by the effect of A, or the effects of A and B are individually determined by some other event acting on them both, in much the same way that a hot day can increase sunburn cases and ice-cream sales without the two phenomena being directly causally related. As with the Vienna experiments, the Waterloo group found that it's not possible to assign a single causal 'story' to the state the photons acquire7.
Some of these experiments are opening up new opportunities for transmitting information. A causal superposition in the order of signals travelling through two gates means that each can be considered to send information to the other simultaneously. “Crudely speaking, you get two operations for the price of one,” says Walther. This offers a potentially powerful shortcut for information processing.
“An indeterminate causal order lets researchers do things with quantum systems that are otherwise impossible.”
Although it has long been known that using quantum superposition and entanglement could exponentially increase the speed of computation, such tricks have previously been played only with classical causal structures. But the simultaneous nature of pathways in a quantum-causal superposition offers a further boost in speed. That potential was apparent when such superpositions were first proposed: quantum theorist Lucien Hardy at the Perimeter Institute8 and Chiribella and his co-workers3 independently suggested that quantum computers operating with an indefinite causal structure might be more powerful than ones in which causality is fixed.
Last year, Brukner and his co-workers showed9 that building such a shortcut into an information-processing protocol with many gates should give an exponential increase in the efficiency of communication between gates, which could be beneficial for computation. “We haven't reached the end yet of the possible speed-ups,” says Brukner. “Quantum mechanics allows way more.”
It's not terribly complicated to build the necessary quantum-circuit architectures, either — you just need quantum switches similar to those Walther has used. “I think this could find applications soon,” Brukner says.
Unity in the Universe
Quantum theory has always looked a little ad hoc. The Schrödinger equation works marvellously to predict the outcomes of quantum experiments, but researchers are still arguing about what it means, because it's not clear what the physics behind it is. Over the past two decades, some physicists and mathematicians, including Hardy10 and Brukner11, have sought to clarify things by building 'quantum reconstructions': attempts to derive at least some characteristic properties of quantum-mechanical systems — such as entanglement and superpositions — from simple axioms about, say, what can and can't be done with the information encoded in the states (see Nature 501, 154–156; 2013).
“The framework of causal models provides a new perspective on these questions,” says Katja Ried, a physicist at the University of Innsbruck in Austria who previously worked with the University of Waterloo team on developing systems with causal ambiguity. “If quantum theory is a theory about how nature processes and distributes information, then asking in which ways events can influence each other may reveal the rules of this processing.”
And quantum causality might go even further by showing how one can start to fit quantum theory into the framework of general relativity, which accounts for gravitation. “The fact that causal structure plays such a central role in general relativity motivates us to investigate in which ways it can 'behave quantumly',” says Ried.
“Most of the attempts to understand quantum mechanics involve trying to save some aspects of the old classical picture, such as particle trajectories,” says Brukner. But history shows us that what is generally needed in such cases is something more, he says — something that goes beyond the old ideas, such as a new way of thinking about causality itself. “When you have a radical theory, to understand it you usually need something even more radical.”
Journal name:
Nature
Volume:
546,
Pages:
590–592
Date published:
(29 June 2017)