Overblog
Editer l'article Suivre ce blog Administration + Créer mon blog
8 septembre 2020 2 08 /09 /septembre /2020 08:23

Pas croyable... Découverte d’un trésor…

C’est un florilège de titres d’articles dithyrambiques qui ont été publiés en concert le 02 septembre. Ces articles annoncent qu’’Anthrôpos n’a pas fini de creuser…’ et qu’Homo-Sapiens n’est pas près d’avoir une pensée scientifique enfermée par des limites car ce qui a été décrypté et annoncé remet en cause un savoir en astrophysique considéré abusivement établi.

Les derniers articles que j’ai postés indiquaient que de nombreuses compréhensions récentes nous disaient que l’univers-contenant était à revoir sérieusement parce que le scénario du Big Bang et ce qui rationnellement semblerait en découler présente des failles significatives. Toutefois les ayatollahs du modèle standard de la cosmologie continuent de mettre des rustines parce que ce modèle standard est toujours intellectuellement, pour eux, confortable.

A l’unisson les articles du 2 septembre reconnaissent que le contenu supposé de l’univers ne répond pas à la croyance établie en ce qui concerne les critères théoriques attribués à l’ensemble de la famille des trous noirs et relatifs aux différents processus de leurs formations.

C’est une ère nouvelle autant théorique que d’observations qui s’ouvre en astrophysique voir en cosmologie. Je vais tenter de vous proposer ci-dessous une synthèse de toutes les perspectives qui sont sous la lumière de cette ère nouvelle.

La source d'ondes gravitationnelles GW190521 (ondes enregistrées sur LIGO et Virgo le 21 Mai 2019) est à ce jour la plus lointaine détectée puisqu'elle s'est produite à environ 7 milliards d'années-lumière de la Voie lactée. Les détecteurs ont en effet révélé qu'il s’agissait de la fusion de deux trous noirs, respectivement de 85 et 65 fois la masse du Soleil environ. Le produit final de cette fusion serait un trou noir de 142 masses solaires, ce qui veut dire que c'est l'équivalent de presque huit masses solaires qui ont été converties en rayonnement gravitationnel pur.

Cette source est Atypique, il semble qu'elle soit quand même le produit de la fusion de deux trous noirs et surtout qu'il en aurait résulté la formation du premier trou noir de masse intermédiaire (IMBH) directement détecté, contenant 142 masses solaires. Mais il ne faut pas exclure qu’il pourrait s’agir de tout autre chose…

En effet, les astronomes ont détecté la collision la plus puissante, la plus lointaine et la plus déroutante des trous noirs à l’aide d’ondes gravitationnelles. Parmi les deux mastodontes qui ont fusionné lorsque l’Univers avait la moitié de son âge actuel, au moins un — pesant 85 fois plus que le Soleil — a une masse que l’on croyait trop grande pour être impliquée dans un tel événement. Et la fusion a produit un trou noir estimé de près de 150 masses solaires, le plaçant dans une gamme où aucun trou noir n’avait jamais été vu de façon concluante auparavant.

« Tout ce qui concerne cette découverte est ahurissant », explique Simon Portegies Zwart, astrophysicien à l’Université de Leiden aux Pays-Bas. En particulier, dit-il, il confirme l’existence de trous noirs de « masse intermédiaire » : des objets beaucoup plus massifs qu’une étoile typique, mais pas aussi grands que les trous noirs supermassifs qui habitent les centres des galaxies.

Deux aspects rendent cet événement exceptionnel. Tout d’abord, la taille de l’ancêtre plus grand (85 masses solaires) tombe dans un « l’écart » où les trous noirs ne sont pas censés se former par des mécanismes conventionnels. Deuxièmement, la détection du reste de masse solaire de 142 est la première observation directe d’un trou noir de masse intermédiaire (IMBH) — une classe de trous noirs avec des masses entre cent et des dizaines de milliers de masses solaires.

Selon les équations d’Einstein, les trous noirs peuvent avoir n’importe quelle masse (sic, cela est vrai). Cependant, dans notre Univers, les trous noirs d’une certaine masse ne peuvent exister que s’il existe un processus astrophysique pour les créer. L’effondrement d’étoiles massives fournit une voie clé à la formation de trou noir qui impose certaines contraintes sur les masses prévues de trou noir.

Un trou noir de masse stellaire se forme lorsqu’une étoile meurt dans une explosion spectaculaire de supernova. L’explosion se produit une fois que la fusion nucléaire a transformé la majeure partie du noyau de l’étoile en fer. À ce stade, l’étoile est hors de combustible nucléaire, et son noyau commence à s’effondrer sur lui-même. Si la masse stellaire est supérieure à une certaine valeur (estimée à au moins 2,17 masses solaires), son noyau est condamné à s’effondrer dans un trou noir. Les trous noirs formés de cette façon peuvent avoir un large éventail de masses, mais seulement jusqu’à une valeur maximale définie par ce qu’on appelle ‘la paire-instabilité’.

La paire-instabilité’ est un phénomène qui draine l’énergie d’une étoile grâce à la production de paires d’électrons-positrons. Dans une étoile chaude, le noyau produit des rayons gamma qui exercent une « pression de (radiation) de photons » sur les couches stellaires extérieures, s’opposant ainsi à l’attraction gravitationnelle. Si le noyau de l’étoile est plus grand qu’environ 65 masses solaires, cependant, les rayons gamma se convertissent efficacement en paires électron-positron, et en conséquence la pression de radiation des photons diminue. Les couches extérieures s’effondrent alors vers l’intérieur, la combustion nucléaire s’accélère d’une manière galopante et l’étoile explose sans laisser derrière elle aucun reste de trou noir. Ce mécanisme convient jusqu’à environ 135 masses solaires, au-delà desquelles l’étoile s’effondre directement dans un trou noir. La paire-instabilité crée ainsi un écart de masse entre 65 et 135 masses solaires, où les trous noirs ne sont pas théoriquement attendus. Jusqu’à présent, aucun des trous noirs progéniteurs détectés par LIGO et Virgo ne s’est trouvé dans cet écart.

Faut-il revoir la théorie des supernovas pour des étoiles massives ? Pas nécessairement parce qu'un trou noir de 142 masses solaires est précisément ce que l'on appelle un trou noir de masse intermédiaire, compris entre une centaine et quelques centaines de milliers de masses solaires tout au plus. Or, il existe des scénarios de fusion à répétition de trous noirs stellaires et de capture pour former des systèmes binaires qui permettraient de faire naître des astres compacts de ces masses. C'est d'autant plus intéressant que l'on s'interroge sur la possibilité de faire naître les trous noirs supermassifs, qui dépassent les quelques centaines de milliers de masses solaires, justement par fusion de trous noirs de masses intermédiaires. Leur croissance viendrait ensuite dans l'Univers observable jeune des courants froids de matière dans le cadre du paradigme devenu dominant de la croissance des galaxies et des trous noirs supermassifs qu'ils hébergent.

Il existe une autre possibilité fascinante, les trous noirs détectés par Ligo et Virgo pourraient être la pointe émergée d'une population de trous noirs primordiaux nés pendant le Big Bang. Cette population pourrait même contribuer à résoudre l'énigme de la nature de la matière noire. Ce qui est sûr, c'est que nous sommes devant la première preuve directe de l'existence de trous noirs intermédiaires, les précédentes étant indirectes et via le rayonnement électromagnétique.

Dans un communiqué du MIT, Alan Weinstein, membre de Ligo et professeur de physique à Caltech, se prononce : « Cet événement ouvre plus de questions qu'il n'apporte de réponses ». Weinstein précise que : « Depuis que nous avons activé Ligo pour la première fois, tout ce que nous avons observé avec crédibilité a été une collision de trous noirs ou d'étoiles à neutrons. C'est le seul cas où notre analyse permet la possibilité que cet événement ne soit pas une telle collision. Bien qu'il soit cohérent avec une fusion de trous noirs binaires exceptionnellement massive et que les explications alternatives soient défavorisées, il repousse les limites de notre connaissance. Et cela le rend potentiellement extrêmement excitant. Parce que nous avons tous espéré quelque chose de nouveau, quelque chose d'inattendu, cela pourrait remettre en question ce que nous avons déjà appris (sic). Cet événement a le potentiel de le faire. »

Citons aussi ce que pense Jean-Pierre Luminet de cette découverte :  « Je ne suis pas convaincu qu'il faille parler de trou noir de masse intermédiaire (IMBH), (pour moi c'est au-dessus de 1.000 masses solaires) en lieu et place de trous noirs stellaires exceptionnellement massifs. Pour expliquer la formation de ces derniers je ne crois guère à des fusions successives de petits trous noirs stellaires, qui me semblent bien improbables (ne parlons même pas des cordes cosmiques, éliminées depuis belle lurette avec la débandade des théories supersymétriques), je privilégierai les trous noirs primordiaux (sic, moi-même je serais plutôt en phase avec cette hypothèse), formés moins d'une seconde après le Big Bang dans cet intervalle de masse (sans compter les bien plus massifs formés quelques secondes plus tard, qui permettraient de rendre compte des premiers quasars). Sans oublier, non plus  la possibilité de trous noirs de 50-100 masses solaires formés par effondrement gravitationnel d'étoiles très massives car de première génération et de très faible métallicité, et qui ne se seraient pas forcément désintégrées par instabilité de paires ».

 

En final de cet article, je vous propose la traduction par mes soins de quelques extraits du suivant obtenu dans Physics.aps.org, annonçant un avenir prometteur : ‘Gravitational-Wave Astronomy Stills in its Infancy’ ; ‘L’astronomie des ondes gravitationnelles est encore à ses débuts’ et en sous-titre : « Les détecteurs d’ondes gravitationnelles ont à peine effleuré la surface du trésor de découvertes qu’ils peuvent produire. »

 

« Une nouvelle ère en physique fondamentale et en astronomie

LIGO et Virgo ont été construits pour observer les ondes gravitationnelles émises par la fusion de binaires compacts, tels que deux trous noirs ou deux étoiles à neutrons. Et ces types de fusions sont les seuls événements que les détecteurs ont repéré en toute confiance dans les deux premières séries d’observation. Ces détections ont permis aux scientifiques de réaliser d’importantes découvertes astrophysiques, dont certaines ont ébranlé la sagesse établie.

L’une des premières découvertes est que les ondes gravitationnelles voyagent à la vitesse de la lumière. Ce résultat, bien qu’il soit compatible avec la Relativité Génerale, pose un défi pour les théories de la gravité inspirées par l’énergie sombre parce que ces théories exigent que les ondes gravitationnelles se déplacent à des vitesses plus lentes (sic). Une autre avancée sur le terrain a été l’observation que les fusions binaires d’étoiles à neutrons sont des ancêtres des sursauts gamma, dures, et courts, résolvant ainsi un puzzle vieux de plusieurs décennies sur l’origine de ces événements astrophysiques transitoires de haute énergie. Et puis, comme annoncé aujourd’hui, LIGO et Virgo ont repéré un trou noir qui se trouve dans le soi-disant écart de masse où aucun trou noir n’était censé se former à cause de la théorie de la ‘Paire-Instabilité’. Ainsi, cette détection remet en question les modèles astrophysiques actuels qui prédisent la formation des grands trous noirs et les environnements dans lesquels ils se forment.

 Considérés dans leur ensemble, ces progrès résolvent de vieilles questions, remettent en question ce que nous pensions savoir sur les processus fondamentaux de l’évolution stellaire, et jettent des doutes sur les solutions proposées aux problèmes actuels en astrophysique observationnelle.

Les observatoires du futur

Au cours des prochaines années, les mises à niveau prévues de LIGO et de Virgo devraient donner lieu à une multiplication de 5 à 10 fois le taux de détection des fusions binaires compactes. L’activation d’autres détecteurs d’ondes gravitationnelles pourrait également augmenter ce taux. KAGRA au Japon, premier détecteur d’ondes gravitationnelles en Asie et premier détecteur à être construit sous terre, a récemment commencé ses opérations…!?. LIGO et Virgo seront également bientôt rejoints par LIGO-India, dont la construction a commencé cette année. (LIGO-India utilise l’instrumentation développée par LIGO). On espère que LIGO-India sera opérationnelle après 2025.

D’autres améliorations et installations sont également à l’étude. Par exemple, une mise à niveau sur les sites LIGO existants, appelée LIGO-Voyager, vise à accroître la sensibilité du LIGO avancé, ce qui entraîne une augmentation d’un facteur 8 de la couverture en volume et donc une augmentation similaire du taux de détection. Il y a aussi le télescope européen Einstein (ET), qui a été initialement conçu en 2008 et qui est actuellement à un stade avancé de conception. Le projet ET est la proposition d’un observatoire souterrain qui abrite trois détecteurs en forme de V aux coins d’un triangle équilatéral avec des côtés de 10 km de long. Et puis il y a des idées pour le ‘Cosmic Explorer’ aux États-Unis, dont les bras seraient 10 fois la longueur de ceux de LIGO, et puis NEMO en Australie, qui ciblerait les signaux post-fusions des étoiles à neutrons binaires. Ensemble, ces nouvelles installations seront en mesure de détecter les événements jusqu’au bord même de l’Univers observable (sic). Ils enregistreront également les signaux de l’univers proche avec une fidélité plus élevée qu’il est actuellement possible.

Plus d’installations aideraient également à identifier l’endroit exact à partir duquel les ondes gravitationnelles émanent. Avec KAGRA et LIGO-India en fonctionnement, les chercheurs pourraient enregistrer un « coup quintuple » — les mêmes ondes déformant les cinq détecteurs. Cela permettrait aux astronomes de regarder plus facilement les fusions avec des télescopes conventionnels, réduisant la zone du ciel qu’ils auraient besoin d’examiner d’un facteur 4. Ces observations multimessages pourraient révéler beaucoup plus d’informations sur la nature et le comportement des sources que celles qui peuvent être glanées à partir des seuls détecteurs d’ondes gravitationnelles.

Questions sur l’astronomie GW de la nouvelle génération

Au fur et à mesure que de nouveaux observatoires, tels que l’ET ainsi que l’Explorateur cosmique, seront mis en ligne, les observatoires d’ondes gravitationnelles sauteront de la surveillance de l’Univers proche à l’arpentage de l’Univers entier pour les fusions de trous noirs. Cet accroissement permettra aux détecteurs de remonter plus loin dans l’histoire et de capturer les fusions de trous noirs et d’étoiles à neutrons à partir d’époques où la formation d’étoiles n’en était qu’à ses balbutiements.

Il est difficile de délimiter les découvertes que cette avancée pourrait permettre et le potentiel qu’elle offre pour percer les remarquables mystères de l’Univers, ainsi que pour découvrir de la nouvelle physique et des nouveaux phénomènes astronomiques. Par exemple, les générations futures d’observatoires d’ondes gravitationnelles terrestres peuvent permettre aux chercheurs de déterminer l’équation d’état de la matière à densité la plus élevée, de détecter la matière noire autour des trous noirs et de tester des théories modifiées de la gravité. Nous allons maintenant décrire ces possibilités en détail :

Gravité extrême et physique fondamentale : Les ondes gravitationnelles émanent de régions de l’espace-temps avec une gravité forte et une grande courbure de l’espace-temps et transportent avec elles des informations non corrompues sur leurs sources. La nature de la source, ses caractéristiques physiques (telles que les masses des objets en collision) et les propriétés de l’environnement dans lequel réside la source sont imprimées dans le signal.

La détection des sources avec les nouveaux observatoires pourrait soumettre la Relativité Générale à des tests les plus contraignants à ce jour et pourrait aider à explorer les violations potentielles de la théorie avec des champs (gravitationnels) forts. Par exemple, les observations pourraient révéler de nouvelles particules et des champs qui violent le principe d’équivalence fort, qui, rapidement parlant, prédit que la chute libre simule avec précision les conditions de gravité zéro dans tous les référentiels inertiels. Les chercheurs pourraient également découvrir des violations de l’invariance de Lorentz (une symétrie fondamentale dans la relativité) ou détecter des polarisations d’ondes gravitationnelles (le modèle caractéristique de la distorsion de l’onde de l’espace-temps) qui ne sont pas prédites par la RG. Nous pourrions aussi déduire des signatures de gravité quantique. Par exemple, certaines théories de la gravité quantique prédisent les configurations pseudoscalaires des ondes gravitationnelles qui violent la parité (une symétrie fondamentale qui dit que la physique d’un système et de son image miroir devrait être la même), tandis que d’autres prédisent des ondes gravitationnelles biréfringentes. Les observatoires de nouvelle génération pourraient également détecter les champs bosoniques ultralégers proposés dans certaines extensions du modèle standard. Les preuves de ces champs devraient provenir de la dynamique orbitale des binaires de trou noir ou des propriétés de spin des trous noirs.

  Matière extrême et environnements extrêmes : D’autres systèmes astrophysiques que les physiciens pourraient explorer avec de nouveaux détecteurs sont les étoiles à neutrons, qui sont les objets les plus denses de l’Univers et qui ont des champs magnétiques jusqu’à des milliards de teslas de magnitude. Six décennies après leur découverte, nous ne comprenons toujours pas pleinement l’équation d’état des noyaux de ces étoiles, et nous ne connaissons pas l’origine de leurs grands champs magnétiques. Ces champs pourraient déformer une étoile à neutrons, ce qui provoquerait l’émission d’ondes gravitationnelles, ce que les futurs observatoires pourraient découvrir.

Lorsque deux étoiles à neutrons sont prises dans une spirale entrante binaire et fusionnent, elles se soumettent à des champs de marée. L’état de la matière du noyau de chaque étoile détermine l’ampleur de sa déformation des marées, ce sont des informations qui devraient être imprimées dans les ondes gravitationnelles émisent. En outre, la fusion des étoiles pourrait laisser derrière elle une étoile à neutrons hypermassive de courte durée, un objet qui se forme à la suite d’une fusion binaire d’étoiles à neutrons et, pendant quelques dizaines de millisecondes, est soutenue par une rotation contre l’effondrement en raison de sa propre gravité. Le rayonnement gravitationnel émis par cette étoile à neutrons hypermassive pourrait également révéler une physique inconnue sur l’état de la matière ultra-haute densité et si cette matière est composée d’un plasma quark-gluon.

Le suivi électromagnétique des observations d’ondes gravitationnelles offrira des occasions de faire la lumière sur l’origine des éléments du processus-r, qui se forment lorsqu’un noyau grandit en capturant rapidement plusieurs neutrons (voir Point de vue : Out of the Neutron Star Rubble Comes Gold). Trouver l’origine des éléments lourds dans l’Univers est un problème de longue date. L’observation électromagnétique de GW170817 a fourni la première preuve irréfutable que les fusions binaires d’étoiles à neutrons produisent des lanthanides et d’autres éléments lourds. Mais beaucoup plus d’observations sont nécessaires pour confirmer si les fusions seules expliquent l’abondance d’éléments lourds dans l’Univers ou si d’autres canaux de production sont nécessaires.

Trous noirs à partir du bord de l’Univers : Les observatoires de nouvelle génération traceront un recensement complet des trous noirs de masse stellaire à partir du temps présent jusqu’à ce que l’Univers n’ait que quelques centaines de millions d’années et que se formaient et se rassemblaient ses premières étoiles. Ce recensement fournira des renseignements clés sur la taille des trous noirs et permettra aux chercheurs de découvrir comment ces objets se forment et se développent.

Il y a de plus en plus de preuves que des trous noirs massifs existent au centre de toutes les galaxies. Les masses de ces trous noirs (souvent appelés trous noirs supermassifs) varient de 105 à 1010 fois celle du soleil et leur taille est largement corrélée avec celle de la galaxie hôte. Mais nous ne savons pas comment ces trous noirs se sont formés ni comment ils sont devenus si énormes. Le modèle de fusion dit hiérarchique postule que ces trous noirs massifs ont d’abord été ensemencés par de lourds trous noirs de masse stellaire, qui ont ensuite fusionné en trous noirs plus grands. Un modèle alternatif suggère que des trous noirs massifs ont été ensemencés par l’effondrement direct de nuages de gaz massifs. Une troisième théorie intrigante spécule que des trous noirs massifs se sont formés dans l’Univers primordial et ont conduit à l’effondrement de la matière noire et des baryons, déclenchant la formation de galaxies. Les données LIGO et Virgo sont jusqu’à présent insuffisantes pour confirmer l’un ou l’autre de ces modèles, mais les informations supplémentaires provenant des futurs observatoires, y compris les masses des premiers trous noirs dans l’Univers et la vitesse à laquelle les fusions se produisent, pourraient identifier l’origine des trous noirs supermassifs.

La cosmologie et l’histoire primordiale de l’Univers : la cosmologie du Big Bang est en grande partie compatible avec la RG, mais l’expansion accélérée de l’Univers dans son histoire récente ne peut pas être expliquée par la théorie d’Einstein. Ce problème indique soit une défaillance de la théorie, soit la présence d’une forme d’énergie exotique, encore inconnue appelée énergie noire. En outre, les observations de l’échelle galactique à l’échelle du cosmos fournissent des preuves indirectes d’une forme exotique de matière, appelée matière noire, mais nous manquons encore de preuves directes pour ces deux choses.

Les futurs observatoires pourraient aider à détecter directement la matière noire autour des trous noirs et autour des étoiles à neutrons. La présence de matière noire pourrait modifier la rotation d’un trou noir. Elle pourrait également modifier la dynamique orbitale des trous noirs binaires. Alternativement, la matière noire pourrait provoquer l’implosion des étoiles à neutrons, faisant des trous noirs de masse solaire qui ne peuvent se former d’aucune autre manière. En outre, avec la détection d’une plus grande population de fusions binaires compactes, et avec des observations électromagnétiques de suivi des décalages rouges des fusions, il sera possible de mesurer avec précision les paramètres cosmologiques, tels que le paramètre Hubble, les densités de matière noire et d’énergie sombre, et l’équation d’état de l’énergie sombre. Ces mesures sont possibles puisque les fusions binaires compactes sont ce que l’on appelle les sirènes standards dont la luminosité peut être utilisée pour apprécier leurs distances. Et comme la RG détermine complètement la luminosité, aucune modélisation astrophysique n’est nécessaire dans de telles mesures. Ces résultats fourniront une mesure totalement indépendante et complémentaire de la dynamique de l’Univers.

Des détecteurs plus sensibles pourraient également capter les ondes gravitationnelles dites stochastiques, qui devraient avoir été produites au début de l’Univers. Comme l’Univers a refroidi à partir de son état primitif chaud et dense, il est censé avoir subi plusieurs transitions de phase qui pourraient avoir généré un signal de fond d’onde gravitationnelle. La détection de ce fond d’onde transformerait considérablement notre connaissance de la physique des particules à des échelles énergétiques inaccessibles aux accélérateurs terrestres. On prévoit également que les ondes gravitationnelles stochastiques émanent de « cordes cosmiques », des défauts topologiques 1D hypothétiques associés à une transition de phase de rupture de symétrie dans l’Univers primitif.

Sources à la frontière des observations : Enfin, les futurs observatoires pourraient aider à comprendre le comportement des supernovas, des pépins stellaires et des tremblements d’étoiles, trois phénomènes astrophysiques mal compris. Ces systèmes devraient générer des ondes gravitationnelles qui pourraient être détectables avec des détecteurs plus sensibles. Les observations multimessages combinant des observatoires gravitationnels avec des télescopes électromagnétiques et avec des observatoires de neutrinos, nous permettront de sonder différents aspects de ces événements astrophysiques extrêmes.

En résumé, l’astronomie des ondes gravitationnelles promet de répondre à des questions clés en physique et en astronomie dont les solutions pourraient considérablement améliorer notre compréhension de l’Univers. Avec ces récompenses potentielles massives, les exemples scientifiques pour la construction de nouveaux détecteurs sont extrêmement convaincants.

 

Partager cet article

Repost0

commentaires

Présentation

  • : Le blog de mc2est-cesuffisant
  • : Ce blog propose une réflexion sur les concepts fondamentaux de physique théorique. Le référentiel centrale est anthropocentrique. Il attribue une sacrée responsabilité au sujet pensant dans sa relation avec la nature et ses propriétés physiques. L'homme ne peut être nu de toute contribution lorsqu'il tente de décrypter les propriétés 'objectives' de la nature.
  • Contact

Recherche

Liens